Generic graph construction ideals and Greene’s theorem
نویسندگان
چکیده
Let X be an m × n matrix of indeterminates, m ≤ n, and T a new indeterminate. Consider the polynomial rings R0 = K[X] and R = R0[T ]. For a given positive integer t ≤ m, consider the ideal It = It(X) generated by the t-minors (i. e. the determinants of the t× t submatrices) of X . Using all these determinantal ideals, we define a new ideal J in R = R0[T ], which we call the generic graph construction ideal, as follows:
منابع مشابه
On path partitions and colourings in digraphs
We provide a new proof of a theorem of Saks which is an extension of Greene’s Theorem to acyclic digraphs, by reducing it to a similar, known extension of Greene and Kleitman’s Theorem. This suggests that the Greene-Kleitman Theorem is stronger than Greene’s Theorem on posets. We leave it as an open question whether the same holds for all digraphs, that is, does Berge’s conjecture concerning pa...
متن کاملar X iv : m at h / 05 06 22 3 v 2 [ m at h . A C ] 1 3 Se p 20 05 COMBINATORIAL SECANT VARIETIES
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
متن کاملCombinatorial Secant Varieties
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
متن کامل. A C ] 1 2 Ju n 20 05 COMBINATORIAL SECANT VARIETIES
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
متن کاملMonomials, Binomials, and Riemann-Roch
The Riemann-Roch theorem on a graph G is closely related to Alexander duality in combinatorial commutive algebra. We study the lattice ideal given by chip firing on G and the initial ideal whose standard monomials are the G-parking functions. When G is a saturated graph, these ideals are generic and the Scarf complex is a minimal free resolution. Otherwise, syzygies are obtained by degeneration...
متن کامل